

Seurat, Signacを使っ たシングルセル解析

Seurat, Signacはそれぞれ、scRNA-seq, scATAC-seq結果からシングルセル解析を行うツールです。いずれもRのパッケージとして提供されています。 今回は10x genomics社のChromiumプラットフォームで取得したサンプルについてCellranger、Cellranger-ATACで処理した結果を用いて、 Seurat、Signacを使った統計解析を行います。

解析に使用するデータについて

- 今回は、マウスの肺細胞について10x GenomicsのChromiumプラットフォームを用いて得られた scRNA-seq及びscATAC-seq配列について、10x GenomicsのCell Ranger及びCell Ranger-ATACと いうツールを用いて処理した結果を用いて解析を行います。
- Chromium結果の配列ファイルはDBKEROの
 - https://kero.hgc.jp/cgi-bin/download/tutorials/learning/data/10X_RNAv3_Lung.tar
 - <u>https://kero.hgc.jp/cgi-bin/download/tutorials/learning/data/10X_ATAC_Lung.tar</u>
 からダウンロードできます。

※ Cell Rangerの実行は時間が掛かりますので今回は割愛します。

※ Cell Rangerによる解析方法については、 https://kero.hgc.jp/open_tutorials/learning/contents/single1_article.htmlにまとめられています。

- Cell Rangerの結果についてはDBKEROの
 - <u>https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scRNA</u> (scRNA-seq)
 - <u>https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scATAC</u> (scATAC-seq)
 以下に保存されています。

今回はCell Rangerの結果を用いて解析の演習を行います。

Guacamoleシステムを使った SHIROKANEサーバへのSSHログインに ついて

- Guacamole (ワカモレ)は Web ブラウザから利用できるSSHクライアントです。
 Guacamoleシステムの詳細は <u>https://supcom.hgc.jp/internal/mediawiki/id/1355</u> にあります。
 (※ 閲覧にはSHIROKANEユーザアカウントとパスワードが必要です)
- 受講者の方々には、今回こちらのシステムを利用して操作していただきます。(他のsshクライアントを用いたログインでも同様に操作できますが、今回の講習ではGuacamoleをご利用ください)
- Firefoxではマウスでコピペができませんでした。ChromeやEdgeブラウザのご使用をお願いします。
- GuacamoleシステムのURLは <u>https://mole.hgc.jp/guacamole/#/</u>です。
- ユーザ名・パスワードは、お知らせするものをご利用ください。

(←) → C' ŵ [D 🔒 =• https://mole.hgc.jp/guacamole/#/ ···· III\ ≫	=			
				mole.hgc.jp が次の許可を求めています	×
				クリップボードにコピーしたテキストや画像へのアクセス	
				許可 ブロック	,
	APACHE GUACAMOLE				
	lect	-	上記	の画面が出たら「許可」を選択して、	iavascrin
	•••••		クリ	リップボードの使用を許可してくだ	さい!
	ログイン				

- ▶ 上記のような画面が現れたら、ご自身のユーザ名(lectXX)をクリックしてください。
- 他のユーザをクリックした場合もログインできてしまいますので、必ずご自身のユーザでログインするようにしてください。他のユーザでログインしてしまった場合はexit後、ホームに戻って操作をやり直してください。

以下のようなコマンドライン画面が現れ、コマンドが実行できるようになります。

Last login: Fri Dec 4 16:23:50 2020 from 202.175.157.98

Begin first by QLOGIN!] Welcome to SHIROKANE supercomputer of Human Genome Center, IMS, UT. This is a login node as the gateway with very little software. You can type glogin COMMAND to use all the features of SHIROKANE. `--' https://supcom.hgc.jp/internal/mediawiki/id/357 A login node of SHIROKANE lect10@slogin2:~]\$ qlogin 要求ハードリソース memory (s_vmem): 4.5G = ジョブは 1 スロットあたり 4.5G バイトのメモリを要求します slots (def_slot): 1 = ジョブは 100% の CPU を要求します total memory: 4.5G = ジョブは 4.5G バイトのメモリを要求します 通常の qlogin を実行します。 Your job 28326615 ("QLOGIN") has been submitted waiting for interactive job to be scheduled ... Your interactive job 28326615 has been successfully scheduled. Establishing /home/geadmin/N1GE/utilbin/lx-amd64/qlogin_wrapper session to host gc016i ... Warning: Permanently added '[gc016i]:35735,[172.28.1.24]:35735' (ECDSA) to the list of known hosts. ast login: Fri Dec 4 15:00:53 2020 from yc001i. OS 7] You are now on OS 7 compute node. ==== あなたのグループ lect のリソース利用状況 ==== haug command version 1.12 Home Disk use> 2 TB / 96 TB (2.1 %) 642 kfiles / 96000 kfiles (0.7 %) Arch Disk use> 0.0 TB / 0 TB (- %) [0.0 TB(cache) + 0.0 TB(tape)] UGE queue use> mjobs.g: 0/4096 (0 %) ljobs.g: 0/768 (0 %) lmem.g: 0/128 (0 %) intr.g: 1/96 (1 %) lect10@gc016 ~]\$

- Seuratの解析にはCell Rangerの3つの結果ファイル、Signacの解析にはCell Ranger-ATACの4つの 結果ファイルが必要です。
- お手元のPCのコマンドシェルからスパコンSHIROKANEにログイン・qloginし、以下のようにディレクトリを構成しデータをダウンロードしてください。

\$ qlogin -l s_vmem=14G,mem_req=14G <₽

\$ #データDL用ディレクトリの作成とSeuratに使うデータのダウンロード & \$ wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/1_cp.sh & \$ sh 1_cp.sh & ...

\$ cat 1_cp.sh <⊐ #!/usr/bin/env sh

#Seuratに使うデータのDL

mkdir -p ~/public_html/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/ cd ~/public_html/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/ wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/matrix.mtx.gz wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/barcodes.tsv.gz wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/barcodes.tsv.gz wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/features.tsv.gz

#Signacに使うデータのDL

mkdir -p ~/public_html/analysis_scATAC/emm_atac/outs/

cd ~/public_html/analysis_scATAC/emm_atac/outs/

wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scATAC/emm_atac/outs/filtered_peak_bc_matrix.h5 wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scATAC/emm_atac/outs/singlecell.csv wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scATAC/emm_atac/outs/fragments.tsv.gz wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis_scATAC/emm_atac/outs/fragments.tsv.gz

UNING WILLIGHT

解析データの準備

MIRICALEU

データのダウンロード後、以下のように正しくファイルがダウンロードされているか確認してください。

\$ #ホームディレクトリに戻る \$ cd <₽ \$ Is -1 ~/public_html/analysis_scRNA/emm_rnaseq/outs/filtered_feature_bc_matrix/ 🖉 合計 134516 -rw-r-----1 lectXX lect 19360229 11月 13 20:00 barcodes.tsv.gz -rw-r---- 1 lectXX lect 260010 11月 13 20:01 features.tsv.gz -rw-r-----1 lectXX lect 118114730 11月 13 20:00 matrix.mtx.gz \$ Is -l ~/public_html/analysis_scATAC/emm_atac/outs/ <┚ 合計 1292832 -- 1 lectXX lect 50333876 11月 15 10:38 filtered peak bc matrix h5 — 1 lectXX lect 1240316124 11月 15 10:39 fragments.tsv.gz -rw-r---- 1 lectXX lect 765761 11月 15 10:39 fragments.tsv.gz.tbi -rw-r---- 1 lectXX lect 32435230 11月 15 10:38 singlecell.csv \$

Cell Ranger(上)/Cell Ranger ATAC(下)の結果出力ファイルの内容は以下の通りです。

File Name	Description
web_summary.html	HTML形式のサマリー。
metrics_summary.csv	CSV形式のサマリー。
possorted_genome_bam.bam	BAMファイル、IGVで閲覧可能。
possorted_genome_bam.bam.bai	BAIファイル。
filtered feature be matrix	細胞ごとの各遺伝子のUMI数のデータ。filter(UMI数の閾値)をパスした細胞の
	データのみ。
filtered feature bc matrix.h5	HDF5形式。細胞ごとの各遺伝子のUMI数のデータ。filterをパスした細胞のみ。
raw feature bc matrix	細胞ごとの各遺伝子のUMI数のデータ。Filterではじかれたデータも含む。
row facture be matrix b	HDF5形式。細胞ごとの各遺伝子のUMI数のデータ。Filterではじかれたデータも含
raw_reature_bc_matrix.ns	む。
analysis	DEGや、クラスタリング結果の情報を含むディレクトリ。
molecule_info.h5	Cell Rangerの再解析に使用する。
cloupe.cloupe	Loupe Cell Browser用のファイル。

File Name	Description
singlecell.csv	バーコードフラグメントごとのカウントマトリクスデータ
possorted_bam.bam	ソート済みbamファイル
possorted_bam.bam.bai	上記のindexファイル
summary.json	JSON形式のサマリー
web_summary.html	HTML形式のサマリー
peaks.bed	ピーク領域データ
raw_peak_bc_matrix.h5	hdf5形式のピークデータ
raw_peak_bc_matrix	ピークデータ
analysis	解析結果を含むディレクトリ
filtered peak bc matrix.h5	hdf5形式のフィルタ後のピークマトリックス
filtered_peak_bc_matrix	フィルタ後のピークマトリックスデータ
fragments.tsv.gz	バーコードフラグメント位置情報のタブ区切りファイル
fragments.tsv.gz.tbi	上記のtabixファイル
filtered_tf_bc_matrix.h5	hdf5形式の細胞ごとの転写因子のデータ
filtered_tf_bc_matrix	細胞ごとの転写因子のデータ
cloupe.cloupe	Loupe Cell Browser用のファイル
summary.csv	CSV形式のサマリー。

結果表示用HTMLの準備

- 解析で得られた画像ファイルを閲覧したりダウンロードするために、以下の要領でHTMLファイルを 用意し、ホームディレクトリにpublic_htmlディレクトリを作成し、その中に配置します。
- public_html/以下は <u>https://www.hgc.jp/~lectXX/</u>以下からブラウザで閲覧できます(lectXX は ご自身のユーザ名に置き換えてください)。
- \$ #Web公開ディレクトリの権限変更
 \$ chmod 755 ~/public_html/
 \$ chmod 755 ~/public_html/*
 \$ cd ~/public_html/
 \$ #結果閲覧用HTMLのダウンロード

- * ##A未協覧//inmeloy/ソンロード \$ wget https://kero.hgc.jp/cgibin/download/tutorials/learning/hgc_short_course_20201209/index.html \$ #ファイル権限の変更 \$ chmod 644 ~/public html/index.html &
- index.htmlをダウンロードしたらWebブラウザからページを確認できることを確認してください。

DRIARRO	分散の大きな、特徴のある遺伝子を抽出		Differentially expressed gene (DEG)の検出
betra (data balance) and a data and Berland a dat	業まだ要素が用意されていません		クラスター間のefferentially expressed pane (265) 265、年以255、マーカー県位子を地址する。
Based or USEC right work0 Formerty (00155			Determine, not florif
We recommend to use Edge (ser. 40 or above). Google Chrome (ser. 51 or above) or Firefor (ser. 56 or above) for the CBKERO browsing. We do not support internet Explorer any more.			contracting (optimized)
Top > HGC Short course 28201289			アノテーション(細胞種間定)
シングルセルデータ解析	top 18 grag		TETE-JULIERS C-b-6475-86. CEMINE FELCE 6. CEMINE CONC. CELOS CONCENTRATION OF CONCENTRATICON OF CONCENTRATICONCENTRATICON OF CONCENTRATICON OF CONCENT
	スケーリングとPCAによる次元研究		Immune cell Ptprc(CD45)+
ここでは、正正のシングルセル種新入門で解析したextRNA-exectedATAC-exectingをと、東モジュールのSecure(スーラ)、Secred(シニャック)を用いてきらに詳細な解析を行う方法を保護します。	家家が重要が用意されていません	実また重要が用意されていません	Preutrophi Lings, Nap
Seuratを使ったscRNA-seq解析			LC (Nuscyle or NH) Cd3d-1 L2R4 (CD25) Gata3+ Extension cell Excellen Cd11
フィルタリング前			Mydhosbaat Edata Kaahi Nor-immune cell Percipia Percipia Decari Ogita Conta?
以来た茎体が局容されていません			juncomina cel precarri(curr), cars, ver
			Received (777 - Unit)
	pea.prg	Vi2DimLoadings.png	記事だ面積が用意されていません 記事だ面積が用意されていません
	heatmap_dim_1_15Ledf heatmap_dim_1_15.pdf		
	家まだ重要が用意されていません	菜まだ面積が用意されていません	
vm+or_uc.png reasons-catter.png			
フィルタリング後			
記念と基礎が用意されていません			dealed however one
			mmun_mmuneging
	JackStrawprg	ElbowPlot.prg	その他の織務権についても可能化を行う
Minifering Sectional areas 1971 - Series - 1922, Nov - 1916	副本方画像が用意されていません		

※「まだ画像が用意されていません」と表示されますが、解析が進むと画像が生成されていきます ※講習で作成したHTMLは講習後は閲覧できなくなりますので予めご了承ください

解析ツールの準備

- Seurat、Signacの解析方法については、
 <u>https://kero.hgc.jp/open_tutorials/learning/contents/single2_article.html</u>にまとめています。
- Seurat、Signacを利用するためには多くのCモジュールや、Rモジュールのインストールが必要です。
- スムーズに進んでもこれらのインストールには何時間か掛かりますので、今回は既にSeurat、Signac をインストールした状態のSingularity コンテナイメージを予め用意しておきました。今回はこのイ メージファイルをダウンロードし、利用することにします。

\$ #SHIROKANE上で適切なバージョンのSingularityを利用できる状態にし、Singularityコンテナを起動する ↩ \$ cd ↩

\$ wget https://kero.hgc.jp/cgi-bin/download/tutorials/learning/3_execute_singularity.sh 식 \$ sh 3_execute_singularity.sh 신

•••

Singularity centos8_20201110.sif:~>

- 上記のように「Singularity centos8_20201110.sif:~>」と表示されれば成功です
- シェルスクリプトの内容は以下のようになっています。

\$ cat 3_execute_singularity.sh <⊐ #!/usr/bin/env sh

#SHIROKANE上で適切なバージョンのSingularityを利用できる状態にする module load /usr/local/package/modulefiles/singularity/3.2.1

#Singularityのバージョンが 3.2.1-1になっていることを確認します。 singularity —version

#Singularityコンテナイメージをダウンロードします。 wget --no-clobber https://kero.hgc.jp/cgi-bin/download/tutorials/learning/centos8_20201110.sif

#コンテナを起動します。 singularity shell centos8_20201110.sif

MURICALEUM

解析ツールの準備

続いてRを起動し、Seuratと、Signacのバージョンが正しく表示されることを確認して ください

Singularity centos8_20201110.sif:~> #Rの実行とSeurat、Signacのバージョン確認 🖉 Singularity centos8_20201110.sif:~> R <┚

R version 3.6.3 (2020-02-29) -- "Holding the Windsock"

Type 'q()' to quit R.

. . .

```
> packageVersion("Seurat") 식
```

```
[1] '3.2.2'
> packageVersion("Signac") <리
[1] '1.1.0'
> q() 🖉
Save workspace image? [y/n/c]: n 신
Singularity centos8_20201110.sif:~>
```

※ Rはq()を入力すると終了することができます。imageの保存は"n"で問題ありません。y にすると、保存に時間が掛かるので注意!

Seuratを使った scRNA-seq解析

このセクションの資料は以下のページを参考に作成しています。

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html (2020.10.02版)

処理手順は、データのフィルタリング(精度の良い細胞データの抽出) → 解析に使用する遺伝子の選抜→ PCAによるデータの次元圧縮→クラスタリングとUMAPによる可視化→ DEG検出および、各クラスターのマーカー遺伝子の発現情報から、細胞種とクラスターの対応付けという順番で解析を進めます。

データの確認と解析準備

- SeuratはscRNA-seq解析によく利用されている解析ツールです。Rのモジュールとして提供されています。ホームページが<u>https://satijalab.org/seurat/</u>にありますので、詳細はここをご確認ください。
- 最初に作業ディレクトリを作成しRを起動します。

```
$ mkdir -p ~/public_html/analysis_scRNA/Seurat
$ cd ~/public_html/analysis_scRNA/Seurat #解析ディレクトリを作成し移動
$ #chmod 755 ~/public_html/analysis_scRNA/Seurat #公開のためパーミッションを変更
$
$ R #Rを起動します
```

- ▶ 今回は既にCell Rangerで処理済みの結果を使って処理を行います。
- 以下のように lung.dataにCell Rangerの結果(細胞ごとの各遺伝子のUMI数のデータ)を読み込み、 Seuratオブジェクトlungを生成します。

※ lung.dataに読み込んだデータファイル(filtered_feature_bc_matrix)は、各行が遺伝子、各列が細胞のUMI値 (=分子数)のカウントマトリクスとなっています ※ Seuratオブジェクトの詳細は <u>https://github.com/satijalab/seurat/wiki</u> をご参照ください

精度関係なくすべての細胞を確認するとトータル8,214細胞が検出されました。ここから精度のよくない細胞を取 り除くフィルタリング処理を行っていきます。

> #マトリクスデータに含まれる細胞数の確認 > length(lung@meta.data\$nFeature_RNA) [1] 8214

- 一般的にscRNA-seqのQCによく使われる指標としては以下の3つがあります。
 - ▶ 1. 各セルで検出される遺伝子の種類の数
 - 低品質の細胞や空の液滴には、遺伝子がほとんどないことがよくあります
 - 細胞ダブレットまたはマルチプレットは、逆に異常に高い遺伝子数を示す可能性があります
 - 2. 各細胞内で検出されたUMI数(1.と強く相関します)
 - 3. ミトコンドリアゲノムにマップされるリード数の割合
 - 低品質/死にかけている細胞は、しばしば広範なミトコンドリア汚染が見られます。
 PercentageFeatureSetという関数を用いることで、mt-で始まるすべての遺伝子セットを抽出することで、ミトコンドリア遺伝子由来リードの割合を取得することができます。
- 以下のようにPercentageFeatureSet を用いるとmeta.dataにミトコンドリアリードのデータが追記されます。
 - > lung[["percent.mt"]] <- PercentageFeatureSet(lung, pattern = "^mt-")
 - > #metadataの確認

> head(lung@meta.data)

	orig. Ident	ncount_kna	nreature_kna	percent.mt
AAACCCAAGCCTAGGA-1	lung	11245	3313	3. 112494
AAACCCACAAGGATGC-1	lung	14923	4079	2. 579910
AAACCCACAATTCGTG-1	lung	11329	3554	4. 060376
AAACCCACACGAGGTA-1	lung	3779	1591	5. 054247
AAACCCACAGAAGCTG-1	lung	11357	3619	2. 694374
AAACCCACATGACAAA-1	lung	3686	1530	3. 635377

解析に使用する細胞のフィルタリング

遺伝子数、UMI数。ミトコンドリアリードの割合の分布をグラフにします

> png("VInPlot_QC.png", width = 800, height = 500)
> VInPlot(lung, features=c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
> dev.off()
> #nFeature_RNA: 検出遺伝子の種類の数, nCount_RNA: UMI数, percent.mt: ミトコンドリア割合
> png("FeatureScatter.png", width = 800, height = 500)
> plot1 <- FeatureScatter(lung, feature1 = "nCount_RNA", feature2 = "percent.mt")
> plot2 <- FeatureScatter(lung, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
> plot1 + plot2
> dev.off()

VInPlot_QC.png

FeatureScatter.png

データ精度の良くない細胞を取り除きます

> #検出遺伝子数1000以上、5000以下、ミトコンドリア5%以下でフィルタリング(ここの値をどうする かが重要!)

> lung <- subset(lung, subset = nFeature_RNA > 1000 & nFeature_RNA < 5000 & percent.mt < 5) > #検出遺伝子数およびUMI数が多い細胞はマルチプレットの可能性が高く除外する

>#ミトコンドリアは5-10%以下とすることが多い。細胞種によって異なるので、分布をきちんと確認し 適切な閾値を設定する

> #細胞数の確認

- > length(lung@meta.data\$nFeature_RNA)
- [1] 5136
- > #細胞フィルタリング後のQCプロットを出力
- > png("VInPlot_QC_subset.png", width = 800, height = 500)
- > #nFeature_RNA: 特徴量数(検出遺伝子数), nCount_RNA: UMIの数, percent.mt: ミトコント・リアの割合
- > VInPlot(lung, features=c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
- > dev. off()

MARINIGUM

次にコンピュータが扱いやすい数値にするためデータの正規化を行います。今回は、各セルの遺伝 子発現量をトータルの発現量で正規化し、これに係数(10,000)を掛けて、結果を対数変換します。 正規化された値は lung[["RNA"]]@data に格納されます。

> #logでノーマライズする (scale.factor=10000 → 1万リードあたりのtag数に正規化(default)) > lung <- NormalizeData(lung, normalization.method = "LogNormalize", scale.factor = 10000) > > #中身を確認

> head(lung[["RNA"]]@data, 1)
6 x 5136 sparse Matrix of class "dgCMatrix"
 [[suppressing 5136 column names 'AAACCCAAGCCTAGGA-1', 'AAACCCACAAGGATGC-1',
'AAACCCACAATTCGTG-1' ...]]

Xkr4	•					•			•		•			
Gm 19938 Rp1	•	·	•	•	·	·	·	·	·	•	•	•	•	•
Sox17	•					•					•	1. 9810015		
Gm37587 Mrp115	•	:	0. 6327018	0. 6315453	:	•	:	:	•	0. 984	•	0. 8109302	•	0. 4681139

解析に使用する遺伝子データの抽出

分散の大きな、発現に特徴のある遺伝子を抽出します (上位2,000個)。PCAの次元圧縮で使用されます。

#分散の大きい(発現変動の大きい)2000遺伝子のみを抽出し、解析に使用
 lung <- FindVariableFeatures(lung, selection.method = "vst", nfeatures = 2000)
 #遺伝子の分散をグラフ上に可視化。top10についてラベルを付加
 top10 <- head(VariableFeatures(lung), 10)

- \sim Lopio \sim near (variable real ures (lung), 10)
- > png("top10.png", width = 800, height = 500)
- > plot1 <- VariableFeaturePlot(lung)</pre>
- > plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
- > plot1 + plot2
- > dev. off()

UNING CALCULATION

※遺伝子抽出の手法については、<u>https://www.biorxiv.org/content/biorxiv/early/2018/11/02/460147.full.pdf</u>に説 明がされているようです。

遺伝子発現データのスケーリングと PCAによる次元圧縮

- PCA計算のためのスケーリング (正規化)を行います。全細胞の平均発現量が0、細胞間の発現量の 分散が1になるように各遺伝子の発現量をスケーリングします。
- > all.genes <- rownames(lung)
- > lung <- ScaleData(lung, features = all.genes)
- > # lung <- ScaleData(lung)とすると、2000遺伝子のみをスケーリングするため短時間で済むが、
- ヒートマップを描く際にスケーリングしていない遺伝子を入れる場合は再スケーリングする必要が出て くる
- PCAによる次元圧縮。今回は抽出した2000遺伝子を元に次元圧縮を行います。

```
> lung <- RunPCA(lung, features = VariableFeatures(object = lung))
> print(lung[["pca"]], dims = 1:5, nfeatures = 5)
PC 1
Positive: Sparc, Igfbp7, Pmp22, Timp3, Ccn1
Negative: Laptm5, Corola, Ptprc, Lcp1, Arhgdib
PC 2
Positive: Serping1, Bgn, Colla2, Sparcl1, Plpp3
Negative: Aqp5, Rtkn2, Cyp2b10, Gprc5a, Clic3
PC 3
Positive: Anxa1, Prdx6, S100a6, Gsn, Mettl7a1
Negative: Cdh5, Cldn5, Ramp2, Egfl7, Tspan7
PC 4
Positive: Ptprcap, Sept1, Ms4a4b, Trbc2, Lck
Negative: Psap, Sirpa, Ccl6, Ear2, Lyz2
PC 5
Positive: Slc43a3, Cfh, Gpc3, Fmo2, Scn7a
Negative: Postn. Cox4i2. Higd1b. Ndufa412. Pdgfrb
>
```


PCA結果のグラフ化 (DimPlot及びVizDimLoadings)

```
> png("pca.png", width = 800, height = 500)
> DimPlot(lung, reduction = "pca")
> dev.off()
> 
> png("VizDimLoadings.png", width = 800, height = 500)
> VizDimLoadings(lung, dims = 1:2, reduction = "pca")
> dev.off()
```


VizDimLoadings.png

遺伝子発現データのスケーリングと PCAによる次元圧縮

- 各細胞の遺伝子発現のヒートマップを生成 (デフォルトでは上位下位の15遺伝子が表示されるようです。横軸にはcells=500の場合上位250、下位250の細胞が選択されています)
 - > pdf("heatmap_dim_1_15.pdf", width = 8, height = 15)
 > DimHeatmap(lung, dims = 1:15, cells = 500, balanced = TRUE)
 - > dev. off()

heatmap_dim_1_15.pdf

遺伝子発現データのスケーリングと PCAによる次元圧縮

以後の解析に用いる次元数を決めるため指標となるグラフを作成

```
> #少し時間がかかる。時間があればもっと次元数を増やしたほうが良い
> lung <- JackStraw(lung, num.replicate = 100, dims = 20)
> lung <- ScoreJackStraw(lung, dims = 1:20)
>
> png("JackStraw.png", width = 800, height = 500)
> JackStrawPlot(lung, dims = 1:20)
> dev.off()
>
> png("ElbowPlot.png", width = 800, height = 500)
> ElbowPlot(lung)
> dev.off()
```


JackStraw.png

ElbowPlot.png

※ 理想的なグラフは <u>https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html#determine-the-dimensionality-of-the-dataset</u>を参考になさってください。

クラスタリングとUMAPによるプロット

PC1-PC10の10個の主成分を用いてクラスタリングとUMAPでの可視化を行います。

```
> # クラスタリング
> lung <- FindNeighbors(lung, dims = 1:10) #仮にPC1-10で解析を進めています
> lung <- FindClusters(lung, resolution = 0.5)
> # UMAPで二次元プロット
> lung <- RunUMAP(lung, dims = 1:10) #tSNEが良い場合はRunTSNE関数を使います
> png("umap.png", width = 800, height = 500)
> DimPlot(lung, reduction = "umap")
> dev.off()
```


umap.png

※いくつの次元までのPCを用いるか、決定するのが難しい場合も多いと思います。なるべく多くの次元を用いて処理し、より少ない次元でも結果があまり変わらない場合は下げていくという方法を取るとよいと思われます。

Diffo

•t: Student's t-test

Differentially expressed gene (DEG)の検出

- クラスター間のdifferentially expressed gene(DEG)、すなわち、マーカー遺伝子を抽出します。
- SeuratオブジェクトのFindAllMarkersがこの一連の処理を行ってくれます。検出手法として以下の Methodが用意されています。

wilcox: Wilcoxon Rank Sum test (default) bimod: Likelihood-ratio test roc: Standard AUC classifier

poisson: Use only for UMI-based datasets

•LR: Uses a logistic regression framework •negbinom: Use only for UMI-based datasets •MAST: GLM-framework •DESeq2

> #全クラスター > lung.markers <- FindAllMarkers(lung, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) #かなり時間がかかる。 > lung.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC) Registered S3 method overwritten by 'cli':											
method from	FindAllMarkersの引数について:										
print.boxx spatstat # A tibble: 40 x 7 # Groups: cluster [20] p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene	 only.pos = TRUE: positive マーカーのみを 抽出する min.pct = 0.25: 2つの細胞グループのいず れかでpct(クラスタ内変動割合)が0.25以 上として検出された遺伝子のみを処理する。 pctの低い遺伝子を処理しないことで、処 理をスピードアップする。 Logfc.threshold = 0.25: 2つの細胞グルー 										
7 0. 3. 19 0. 972 0. 080 0. 3 0.010 8 0. 3. 16 0. 992 0. 171 0. 3 Ramp2 9 0. 3. 27 1 0. 154 0. 4 Chil3	ノ間での発現比が平均で、ログスケールで 少なくとも0.25倍の差がある遺伝子に絞っ て処理を行う。値を増やすと関数は高速に										
10 0. 2.78 0.954 0.17 0. 4 Tnf # with 30 more rows	なるが、低いシグナルを見逃す可能性がある。										

UNIN MARKEN

Differentially expressed gene (DEG)の検出

個別に遺伝子セットを抽出したい場合の例

> #各クラスターの上位10マーカーを抽出
> top10 <- lung.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
> #テキストに出力(top10のみ)
> write.table(top10, "top10.csv", append = FALSE, quote = TRUE, sep = ",", row.names = TRUE, col.names = TRUE)

	А	В	С	D	E	F	G	Н
1		p_val	avg_logFC	pct.1	pct.2	p_val_adj	cluster	gene
2	1	0	2.034322433	0.984	0.295	0	0	Ces1d
3	2	0	1.973771726	0.998	0.536	0	0	Mfap4
4	3	0	1.847289669	0.996	0.292	0	0	Cdo1
5	4	0	1.758687288	1	0.474	0	0	Gpx3
6	5	0	1.720580269	0.991	0.33	0	0	Tcf21
7	6	0	1.701885546	1	0.494	0	0	Hsd11b1
8	7	0	1.669858812	1	0.622	0	0	Inmt
9	8	0	1.656718575	0.999	0.474	0	0	Fmo2
10	9	0	1.649774431	0.991	0.307	0	0	Gsta3
11	10	0	1.649621281	0.999	0.38	0	0	Aldh1a1
12	11	0	1.445156475	0.982	0.261	0	1	Mfap5
13	12	0	1.421949631	0.853	0.108	0	1	C4b
14	13	1.61E-238	1.768413879	1	0.846	3.13E-234	1	Mgp
15	14	5.80E-234	1.623346668	0.98	0.412	1.12E-229	1	Cxcl14
16	15	6.30E-231	1.352499875	0.978	0.384	1.22E-226	1	Gas6
17	16	1.89E-224	1.274022455	0.932	0.331	3.67E-220	1	C3
18	17	1.20E-213	1.249526824	0.998	0.468	2.33E-209	1	Col3a1
19	18	1.60E-205	1.345842279	0.944	0.4	3.11E-201	1	NbI1
20	19	8.62E-200	1.304739551	0.998	0.568	1.67E-195	1	Timp3
21	20	8.88E-154	1.281050872	0.845	0.335	1.72E-149	1	Maff
22	21	0	2.317290382	0.971	0.26	0	2	Plac8
-) to	p10 (+)						: •

Top10.csv

各クラスターで個別にマーカー遺伝子を抽出する場合の例です

> # 各クラスターで個別に解析した場合:
 > # クラスター1での発現変動遺伝子の同定
 > cluster1.markers <- FindMarkers(lung, ident.1 = 1, min.pct = 0.25)
 > #クラスター5とクラスター0,3間での発現変動遺伝子
 > cluster5.markers <- FindMarkers(lung, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)

上位の行を表示

> head (cluster1.markers	s)			
p_val a	avg_logFC pct.1	pct. 2 p_\	/al_ad	j	
Mfap5	0 1.445156	5 0.982 0.	261		0
C4b	0 1.4219496	6 O. 853 O.	108		0
Clec11a	0 1.0409024	4 0. 722 0.	092		0
Cygb	0 0.891373	6 0. 763 0.	084		0
C2	0 0.8197373	3 0.755 0.	101		0
Pdgfrl	0 0. 7835708	8 0.811 0.	115		0
>					
> head (d	cluster5.markers	s)			
p_val a	avg_logFC pct.1	pct. 2	p_va	l_adj	
Nkx2-1	0.000000e+00	1.829041	0.948	0.026	0.00000e+0
Scnn1g	1.280513e-306	1.574700	0.904	0.016	2. 484324e-30
Ptprf	3.660918e-304	1.621070	0.926	0.028	7.102546e-30
Cyp2b10	6. 706375e-304	2.178700	0. 931	0.033	1.301104e-29
I 18r1	1.213560e-303	1.564943	0.918	0.024	2.354428e-29
Pdpn	4. 103163e-302	2.091630	0.953	0.046	7.960547e-29

MIRINI MIRIN

MARCARE

MARINAGION

Differentially expressed gene (DEG)の検出

各クラスターの上位10マーカーのヒートマップ図を出力します。

> pdf("DoHeatmap_top10.pdf", width = 25, height = 20)
> DoHeatmap(lung, features = top10\$gene) + NoLegend()
> dev.off()

DoHeatmap_top10.pdf

下記テーブルの既知マーカー遺伝子を用いて細胞種を同定します。

	Ce	Cell type				
	T cell (T細胞)		Cd3d, Cd4, Cd8a			
	NK cell (NK細胞)		Cd3d(-), Nkg7, Gzma			
	B cell (B細胞)		Cd19, Cd79a			
		Macrophage	Itgam(CD11b)			
Immune cell	Myeloid cell (骨髄細胞)	Alveolar macrophage	Itgax(CD11c), Siglecf			
Ptprc(CD45)+		Neutrophil (好中球)	Ly6g, Ngp			
	DC (結社)半細胞)		Itgax(CD11c),			
			Itgae(CD103)			
	III C (Nucouto or NH) (白然	「」~、パポン	Cd3d(-), IL2RA(CD25),			
			Gata3+			
	Epithelial cell (上皮細胞)		Epcam, Cdh1			
	Myofibroblast (筋繊維芽細	胞)	Acta2, Mustn1			
Non-immune cell	Fibroblast (繊維芽細胞)		Col1a1, Cpl1a2			
	Pericyte (周皮細胞)		Mcam, Pdgfrb, Cox4i2			
	Endothelial cell (内皮細胞)		Pecam1(CD31), Cdh5, Vwf			

上表を元に、マーカーとなる遺伝子を変数に代入します。

> Immune <- c("Ptprc") #CD45 > T <- c("Cd3d", "Cd4", "Cd8a") > NK <- c("Nkg7", "Gzma") > B <- c("Cd19", "Cd79a") > Myeloid <- c("Itgam", "Cd68") > AlveolarMacrophage <- c("Itgax", "Siglecf", "Cd68") > DC <- c("Itgax", "Itgae") > Neutrophil <- c("Ly6g", "Ngp") > Epithelial <- c("Epcam", "Cdh1") > Myofibroblast <- c("Mustn1", "Acta2") > Fibroblast <- c("Col1a1", "Col1a2") > Endothelial <- c("Pecam1", "Cdh5", "Vwf") > Pericyte <- c("Mcam", "Pdgfrb", "Cox4i2")</pre>

免疫関連細胞クラスター(Immune)の同定

```
> #バイオリンプロット(Immune cell)
> png("vlnplot_Immune.png", width=400, height=400)
> VlnPlot(lung, features = Immune)
> dev.off()
>
> #マーカー遺伝子の発現量でUMAPプロットを色塗り(Immune cell)
> png("FeaturePlot_Immune.png", width=400, height=400)
> FeaturePlot(lung, features = Immune)
> dev.off()
```


vlnplot_Immune.png

FeaturePlot_Immune.png

 同様に features = Immune の部分を変えてグラフを作成します。作成した図は <u>https://kero.hgc.jp/cgi-</u> bin/download/tutorials/learning/analysis scRNA/Seurat/scRNA annotation.zip からダウン

ロードできます。

マニュアルで割り当てた細胞種をUMAP上に可視化します

> #クラスターへの細胞種の割り当て

> new.cluster.ids <- c("Fibroblast", "Fibroblast", "Myeloid cell", "Endothelial cell", "Alveolar Macrophage", "Epithelial cell", "Pericyte", "B cell", "DC", "NK cell", "Myofibroblast", "Fibroblast", "T cell", "Fibroblast", "no ident", "Neutrophil cell", "no ident", "no ident", "Endothelial cell", "Pericyte", "no ident")

> names(new.cluster.ids) <- levels(lung)

- > lung <- RenameIdents(lung, new.cluster.ids)
- > #ラベル付きでUMAPプロットを出力
- > png("umap_cls.png", width = 800, height = 500)
- > DimPlot(lung, reduction = "umap", label = TRUE, pt.size = 0.5)
- > dev. off()

>

>

以下のようにlungオブジェクトを必ず保存しておいてください。あとでscATAC-Seqとの統合解析に使用します

FeaturePlot_Immune.png

Signacを使った SCATAC-seq解析

このセクションの資料は以下のページを参考に作成しています。

<u>https://satijalab.org/signac/articles/pbmc_vignette.html</u> (2020.11.06版)

処理手順は、データのフィルタリング(精度の良い細胞データの抽出)→抽出 データの次元圧縮→クラスタリングとUMAPによる可視化となります。可視化 後、scRNA-seqのクラスターに対してscATAC-seqで得られたクラスターを比較 し、細胞種の対応付けを行います。

データの確認と解析準備

Wilking Contraction

- SignacはscATAC-seq用の解析ツールです。Seuratと同じグループにより開発されているSeuratの拡 張Rモジュールです。<u>https://satijalab.org/signac/index.html</u> に公開されています。
- 最初に作業ディレクトリを作成しRを起動します。

\$ mkdir -p ~/public_html/analysis_scATAC/Signac #解析ディレクトリを作成 \$ cd ~/public_html/analysis_scATAC/Signac \$ R

まず以下のように、解析に必要なライブラリをロードします。

- > #解析スタート
 > #必要なライブラリを読み込む
 > library(Signac)
 > library(Seurat)
 > library(GenomeInfoDb)
 > library(EnsDb. Mmusculus. v79)
 > #library(EnsDb. Hsapiens. v75) #humanの場合
 > library(ggplot2)
 > library(scales)
- > library (patchwork)
- > set. seed (1234)

データの確認と解析準備

- Cell Ranger ATACのアウトプットのうち下記4ファイルを使用します。
 - •filtered_peak_bc_matrix.h5
 - singlecell.csv
 - fragments.tsv.gz
 - fragments.tsv.gz.tbi
- 以下のように、データを読み込み、SeuratObject (lung)を生成します。

```
> #入力ファイル読み込み
> counts <- Read10X h5(filename =</pre>
"~/public_html/analysis_scATAC/emm_atac/outs/filtered_peak_bc_matrix.h5") #peakのファイル
>
> #データ読み込み
> metadata <- read.csv(file =
"~/public_html/analysis_scATAC/emm_atac/outs/singlecell.csv", header = TRUE, row.names =
1)
>
> #fragmentファイル読み込み
> chrom_assay <- CreateChromatinAssay(counts = counts, sep = c(":", "-"), genome = 'mm10',
  fragments = '~/public html/analysis scATAC/emm atac/outs/fragments.tsv.gz'. min.cells =
1. min. features = 200)
>
> #Seuratオブジェクトの生成
> lung <- CreateSeuratObject(counts = chrom_assay, assay = 'peaks', project = 'ATAC',
meta. data = metadata)
```

※4ファイルのうち、上の2つはピーク及び細胞のマトリクスファイルです。scRNA-seqで使用したカウントマトリク スに対応します。ただし遺伝子の代わりにゲノムのピーク領域となります。データの詳細は、 https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/output/matrices で確認できます。 下の2つはフラグメントファイルです。全シングルセルについての全リードのリストです。データの詳細は、 https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/output/fragments で確認できます。

- 以下のような指標に従って、解析に使用する細胞を選択していきます。
 - ヌクレオソームバンドパターン: DNAフラグメントサイズのヒストグラム(ペアエンド シーケンシングリードから決定)は、シングルヌクレオソームに巻き付いたDNAの長さに 強く依存したパターンを示します。シングルセルごとにこれを計算し、ヌクレオソームを 含まないフラグメントに対するモノヌクレオソームのおおよその比率 (nucleosome signal)から外れるものを除外します。
 - ピーク中にアサインされるフラグメントの総数:細胞ごとのsequencing depth/complexityの値を利用する。この値が小さい場合は、リード数が少ない細胞を示 し、この値が非常に大きい細胞は、ダブレット等のアーティファクトを表す場合がありま す。
 - ピーク内にアサインされるフラグメントの割合:ATAC-seqピーク内にあるすべてのフラ グメントの割合を表します。値が低い15~20%未満の細胞は、多くの場合、低品質の細 胞またはアーティファクトを表し、フィルターする必要があります。この値は、使用され るピークのセットに影響される可能性があることに注意してください。
 - ブラックリスト領域にあるリードの比率: ENCODEプロジェクトでは、アーティファクト シグナルであることの多いリードを表すブラックリスト領域のリストを提供しています (<u>https://github.com/Boyle-Lab/Blacklist</u>)。これらの領域への読み取りマッピングの割 合が高いセルは、多くの場合、アーティファクトを表しているため、フィルターする必要 があります。

- まず、フィルタリングや解析に用いる遺伝子アノテーションの情報をlungオブジェクトに追加します
- > #lungに遺伝子アノテーション情報を追加(CoveragePlotに遺伝子アノテーションを表示するのに 必要)
- > annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)
- > #UCSC mm10にマップされた情報のため、Ensembl から UCSCスタイルのアノテーションに変更
- > seqlevelsStyle(annotations) <- 'UCSC'
- > genome(annotations) <- "mm10"
- >#オブジェクトにこのannotation情報を追加
- > Annotation(lung) <- annotations
- 続いてフィルタリングを行います。・Nucleosome Signal(ヌクレオソームを1つ含むリードペアと、 含まないリードペアの割合)と、・ピーク位置にアサインされるフラグメントの割合、・ブラックリス ト領域にアサインされたリード割合、でフィルタリングを行います。
 - > # QC & フィルタリング
 > #(mononucleosomal fragments)/(nucleosome-free fragments)
 > lung <- NucleosomeSignal(object = lung, region = 'chr1-1-10000000')
 >
 > #ピークにアサインされたリードの割合(%)
 > lung\$pct_reads_in_peaks <- lung\$peak_region_fragments / lung\$passed_filters * 100
 > #blacklist (artificial signalが多い場所)にアサインされたリードの割合
 > lung\$blacklist_ratio <- lung\$blacklist_region_fragments / lung\$peak_region_fragments</pre>

- ・ピーク位置にアサインされるフラグメント割合(pct_reads_in_peaks)、・ブラックリスト領域に アサインされたリード割合(blacklist_ratio)、 ・Nucleosome Signal、・ピーク中にあるフラグメン トの総数(peak_region_fragments)をグラフにします。
- > png("VInPlot_FeatureScatter.png", width = 800, height = 500) > plot1 <- VInPlot(object = lung, features = c('pct_reads_in_peaks', 'blacklist_ratio', 'nucleosome_signal'), pt.size = 0.1) + NoLegend() > plot2_a <- VInPlot(object = lung, features = 'peak_region_fragments', pt.size = 0.1, log = TRUE) + NoLegend() > plot2_b <- FeatureScatter(lung, "peak_region_fragments", 'blacklist_ratio', pt.size = 0.1) + NoLegend() > plot2_c <- FeatureScatter(lung, "peak_region_fragments", 'nucleosome_signal', pt.size = 0.1) + NoLegend() > plot2 <- plot2_a | plot2_b | plot2_c > plot1 / plot2 > dev.off()

- PeriodPlotの描画。すべての細胞のフラグメント長の周期性を確認し、ヌクレオソームの信号強度が 高いまたは低いセルごとにグループ化することができます。Nucleosome Signalの外れ値にある細胞 は、異なるヌクレオソームバンドパターンを持っていることがわかります。
- > lung\$nucleosome_group <- ifelse(lung\$nucleosome_signal > 1.3, 'NS > 1.3', 'NS < 1.3')
 > png("PeriodPlot.png", width = 800, height = 500)
 > FragmentHistogram(object = lung, group.by = 'nucleosome_group', region = 'chr1-110000000')
 > dev.off()

PeriodPlot.png

データ精度の良くない細胞を取り除きます

> length(lung@meta.data\$nFeature_peaks) #細胞数確認 [1] 8552 > > #細胞フィルタリング > lung <- subset(lung, subset = peak_region_fragments > 500 & peak_region_fragments < 20000 &</p> pct_reads_in_peaks > 10 & blacklist_ratio < 0.05 & nucleosome_signal < 10)</pre> > length(lung@meta.data\$nFeature_peaks) #細胞数確認 [1] 7086 > >#先ほどと同じようにQCの図を描いてみる > png("VInPlot_FeatureScatter2.png", width = 800, height = 500) > plot1 <- VInPlot(object = lung, features = c('pct_reads_in_peaks', 'blacklist_ratio', 'nucleosome_signal'), pt.size = 0.1) + NoLegend() > plot2_a <- VInPlot(object = lung, features = 'peak_region_fragments', pt.size = 0.1, log = TRUE) + NoLegend() > plot2_b <- FeatureScatter(lung, "peak_region_fragments", 'blacklist_ratio', pt.size = 0.1) + NoLegend() > plot2_c <- FeatureScatter(lung, "peak_region_fragments", 'nucleosome_signal', pt. size = 0.1) + NoLegend() > plot2 <- plot2 a | plot2 b | plot2 c > plot1 / plot2 > dev. off()

VInPlot_FeatureScatter2.png

Filtered cells: 500 < peac_region_fragments < 20000, pct_reads_in_peaks > 10, blacklist_ratio < 0.05, nucleosome_signal < 10

Marker Marker

クラスタリングとUMAPによるプロット

フィルターした細胞のピーク情報を用いてクラスタリングとUMAPによる可視化を行います

> lung <- RunTFIDF(lung) #term frequency-inverse document frequency (TF-IDF) normalization

```
> lung <- FindTopFeatures(lung, min.cutoff = 'q0') #feature selection
```

>

```
> lung <- RunSVD(object = lung, assay = 'peaks', reduction.key = 'LSI_',
reduction.name = 'lsi', seed.use= 1234) #dimensional reduction
> lung <- RunUMAP(object = lung, reduction = 'lsi', dims = 1:30)
> lung <- FindNeighbors(object = lung, reduction = 'lsi', dims = 1:30)
> lung <- FindClusters(object = lung, verbose = FALSE)
> png("umap_scATAC.png", width = 800, height = 500)
> DimPlot(object = lung, label = TRUE)
> dev.off()
```


umap_scATAC.png

※ TF-IDFとそれに続くSVDの組み合わせた処理は latent semantic indexing (LSI)として知られています。 https://science.sciencemag.org/content/367/6473/45.ful

scRNA-seqと同様に下記テーブルの既知マーカー遺伝子を用いて細胞種を同定します。

	Cel	Cell markers	
	T cell (T細胞)		Cd3d, Cd4, Cd8a
	NK cell (NK細胞)		Cd3d(-), Nkg7, Gzma
	B cell (B細胞)		Cd19, Cd79a
		Macrophage	Itgam(CD11b)
Immune cell	Myeloid cell (骨髄細胞)	Alveolar macrophage	Itgax(CD11c), Siglecf
Ptprc(CD45)+		Neutrophil (好中球)	Ly6g, Ngp
	りて (精神光細胞)		ltgax(CD11c),
			Itgae(CD103)
	 C(Nuocyte or NH)(自然)	リンパポ	Cd3d(-), IL2RA(CD25),
			Gata3+
	Epithelial cell (上皮細胞)		Epcam, Cdh1
	Myofibroblast (筋繊維芽細胞	包)	Acta2, Mustn1
Non-immune cell	Fibroblast (繊維芽細胞)		Col1a1, Cpl1a2
	Pericyte (周皮細胞)		Mcam, Pdgfrb, Cox4i2
	Endothelial cell (内皮細胞)		Pecam1(CD31), Cdh5, Vwf

scRNA-seqのときと同様に、マーカーとなる遺伝子を変数に代入します。

> Immune <- c("Ptprc") #CD45</pre> > T <- c("Cd3d", "Cd4", "Cd8a") > NK <- c("Nkg7", "Gzma") > B <- c("Cd19", "Cd79a") > Myeloid <- c("Itgam", "Cd68") > AlveolarMacrophage <- c("Itgax", "Siglecf", "Cd68") > DC <- c("Itgax", "Itgae") > Neutrophil <- c("Ly6g", "Ngp")</pre> > Epithelial <- c("Epcam", "Cdh1") > Myofibroblast <- c("Mustn1", "Acta2") > Fibroblast <- c("Colla1", "Colla2") > Endothelial <- c("Pecam1", "Cdh5", "Vwf") > Pericyte <- c("Mcam", "Pdgfrb", "Cox4i2")</pre>

UNINE NUMBER

マーカー遺伝子周辺のピーク情報(オープンクロマチンの状態)を見ていきます。

IUJISIKOBIKU

同様に symbol==XXXにマーカー遺伝子を入れて画像を作成します。作成した図は <u>https://kero.hgc.jp/cgi-</u> <u>bin/download/tutorials/learning/analysis_scATAC/Signac/scATAC_annotation.zip</u> からダウンロードできます。

scATAC-seqの結果から"gene activity matrix"(遺伝子とプロモーター領域を含むマトリックス)を作成します。GeneActivity関数によって領域内のフラグメントのカウントまで自動で行われます。

UMAP上に細胞クラスターをマップしてみます。以下は内皮細胞の例です。

> png("FeaturePlot_ATAC_Endothelial.png", width=2400, height=500)
> FeaturePlot(object = lung, features = Endothelial, pt.size = 0.1, max.cutoff = 'q95',
ncol = 3)
> dev.off()

同様に他の細胞種についても画像を作成します。作成した図は <u>https://kero.hgc.jp/cgi-bin/download/tutorials/learning/analysis scATAC/Signac/scATAC annotation.zip</u>からダウンロードできます。

- ここからは、scRNA-seqの結果とscATAC-seqの結果を統合して解析します。
- 前図のようにscATAC-seqの結果から細胞種を人間の目で同定することは、scRNA-seqに比 ベノイズが多く、かなり困難なことが多いです。
- ここでは、 scRNA-seqのデータを読み込んだ後、FindTransferAnchors (cross-modality integration)とTransferDataという関数を用いて scATAC-seqのデータと対応付けをコン ピュータで行います。
- > #scRNA-seqの解析データ(lung_rnaオブジェクト)を読み込む
 > lung_rna <- readRDS("../../analysis_scRNA/Seurat/lung_rna.rds")
 > lung_rna\$new_cluster <- Idents(lung_rna)
 >
 #scRNA-seqとscATAC-seqのクラスターを対応付ける
 > #lung_rna: scRNA-seqのSeuratオブジェクト、lung: scATAC-seqのSeuratオブジェクト
 > transfer.anchors <- FindTransferAnchors(reference = lung_rna, query = lung, reduction = 'cca')
 > predicted.labels <- TransferData(anchorset = transfer.anchors, refdata = lung_rna\$new_cluster, weight.reduction = lung[['lsi']])
 > lung <- AddMetaData(object = lung, metadata = predicted.labels)</pre>

- 上で作成したumap(scATAC-seq)の図に細胞種を同定(マップ)したものを可視化します。
- > #以下、可視化 >#色がずれるので対応させる > RNA_Cluster <- unique(lung_rna@active.ident) > RNA col <- hue pal() (length(RNA Cluster)) #カラーパレットより14色取得 > names(RNA col) <- RNA Cluster > ATAC_Cluster <- unique (predicted. labels\$predicted. id) > ATAC_col <- RNA_col[ATAC_Cluster] > plot1 <- DimPlot(object = lung_rna, cols = RNA_col, group.by = 'new_cluster', label = TRUE, repel = TRUE) + ggtitle('scRNA-seq') > plot2 <- DimPlot(object = lung, cols = ATAC_col, group.by = 'predicted.id', label = TRUE, repel = TRUE) + ggtitle('scATAC-seq') > > png ("DimPlot RNAseq+ATACseq.png", width = 1300, height = 500) > plot1 + plot2 > dev. off()

DimPlot_RNAseq+ATACseq.png

最後にscRNA-seqとscATAC-seq結果データの対応表を出力してみます。

- > #scRNA-seqとscATAC-seqデータを統合したときのアノテーションの割当表を出力
- > txt <- table(lung\$seurat_clusters, lung\$predicted.id)</pre>
- > write.table(txt, file= "table.txt", quote=F, col.names=TRUE, sep="¥t")

ATAC cluster	Alveolar Macro- phage	B cell	DC	Endothelial cell	Epithelial cell	Fibroblast	Myeloid cell	Myofibro blast	NK cell	Neutrophil cell	Pericyte	T cell	no ident
2	546	0	0	1	0	0	0	0	0	63	0	0	0
12	0	221	0	0	0	0	0	0	0	0	0	0	0
24	0	30	0	1	0	0	0	0	0	0	0	0	9
8	0	0	276	7	0	2	0	2	2	7	0	0	0
0	0	0	0	679	0	2	0	57	1	2	0	1	0
4	1	0	4	402	2	21	0	3	1	0	1	0	1
13	2	1	1	207	0	4	0	2	1	0	0	0	0
21	0	0	0	126	0	1	0	0	0	0	1	0	0
11	1	1	6	133	0	60	1	12	2	3	1	2	8
23	0	0	6	68	1	1	0	0	2	18	0	0	0
20	32	0	7	53	3	19	3	4	2	6	0	4	4
7	1	0	1	26	225	18	0	37	0	21	2	0	1
14	0	1	1	2	198	3	0	6	1	4	0	0	0
1	0	0	1	9	0	644	0	0	3	3	0	0	0
3	0	0	0	0	0	415	0	30	1	1	1	0	0
5	0	0	0	2	0	368	0	3	2	0	0	0	0
16	0	0	10	1	0	0	184	0	0	0	0	0	0
17	0	0	0	0	0	7	0	179	0	1	0	0	0
19	0	2	1	26	0	19	1	73	1	13	1	0	0
6	0	0	0	0	0	0	0	0	363	0	0	0	0
9	1	0	3	7	48	7	1	10	2	199	0	0	0
22	0	0	0	0	0	0	9	0	0	110	0	0	0
18	0	1	1	0	0	1	0	14	0	1	147	0	0
10	0	0	0	0	0	0	0	0	31	0	0	220	0
15	0	0	0	4	0	0	0	1	87	2	0	1	111

> #lung**のオブジェクトデータを保存しておきたい場合** > save (lung, file="lung.Rdata") > q()